Stable Commutator Length in Baumslag–solitar Groups and Quasimorphisms for Tree Actions

نویسنده

  • JOEL LOUWSMA
چکیده

This paper has two parts, on Baumslag–Solitar groups and on general G–trees. In the first part we establish bounds for stable commutator length (scl) in Baumslag–Solitar groups. For a certain class of elements, we further show that scl is computable and takes rational values. We also determine exactly which of these elements admit extremal surfaces. In the second part we establish a universal lower bound of 1/12 for scl of suitable elements of any group acting on a tree. This is achieved by constructing efficient quasimorphisms. Calculations in the group BS(2, 3) show that this is the best possible universal bound, thus answering a question of Calegari and Fujiwara. We also establish scl bounds for acylindrical tree actions. Returning to Baumslag–Solitar groups, we show that their scl spectra have a uniform gap: no element has scl in the interval (0, 1/12).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C∗-Algebras for Boundary Actions of Solvable Baumslag-Solitar Groups

In this paper we will consider a graph consisting of one vertex and one edge.The Bass-Serre theory gives a tree on which the fundamental group acts. We orient the edge and use this to direct the covering tree. We then consider the action of the fundamental group on the boundary of the directed tree, and study the C∗-algebra of this dynamical system. In this situation the fundamental group is a ...

متن کامل

A Linear-time Algorithm to Compute Geodesics in Solvable Baumslag–solitar Groups

We present an algorithm to convert a word of length n in the standard generators of the solvable Baumslag–Solitar group BS(1, p) into a geodesic word, which runs in linear time and O(n logn) space on a random access machine.

متن کامل

A Note on Twisted Conjugacy and Generalized Baumslag-solitar Groups

A generalized Baumslag-Solitar group is the fundamental group of a graph of groups all of whose vertex and edge groups are infinite cyclic. Levitt proves that any generalized BaumslagSolitar group has property R∞, that is, any automorphism has an infinite number of twisted conjugacy classes. We show that any group quasi-isometric to a generalized Baumslag-Solitar group also has property R∞. Thi...

متن کامل

A Logspace Solution to the Word and Conjugacy problem of Generalized Baumslag-Solitar Groups

Baumslag-Solitar groups were introduced in 1962 by Baumslag and Solitar as examples for finitely presented non-Hopfian two-generator groups. Since then, they served as examples for a wide range of purposes. As Baumslag-Solitar groups are HNN extensions, there is a natural generalization in terms of graph of groups. Concerning algorithmic aspects of generalized Baumslag-Solitar groups, several d...

متن کامل

Metric properties of Baumslag-Solitar groups

We compute estimates for the word metric of Baumslag–Solitar groups in terms of the Britton’s lemma normal form. As a corollary, we find lower bounds for the growth rate for the groups BS(p, q), with 1 < p ≤ q.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014